Unprecedented UK heatwave harmonised drivers of fuel moisture creating extreme temperate wildfire risk

  • Lhotka, O. & Kyselý, J. The 2021 European heat wave in the context of past major heat waves. Earth Space Sci. 9, e2022EA002567 (2022).


    Google Scholar
     

  • Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett. 39, L12807 (2012).

  • Kendon, M. Unprecedented Extreme Heatwave, July 2022. (2022).

  • Yule, E. L., Hegerl, G., Schurer, A. & Hawkins, E. Using early extremes to place the 2022 UK heat waves into historical context. Atmos. Sci. Lett. 24, e1159 (2023).


    Google Scholar
     

  • Ma, F., Yuan, X., Jiao, Y. & Ji, P. Unprecedented Europe heat in June–July 2019: risk in the historical and future context. Geophys. Res. Lett. 47, e2020GL087809 (2020).


    Google Scholar
     

  • Sanderson, M. & Ford, G. Projections of severe heat waves in the United Kingdom. Clim. Res. 71, 63–73 (2016).


    Google Scholar
     

  • Little, K. et al. Persistent positive anomalies in geopotential heights drive enhanced wildfire activity across Europe. Phil. Trans. Royal Soc. B 380, 20230455 (2025).

  • Jain, P., Sharma, A. R., Acuna, D. C., Abatzoglou, J. T. & Flannigan, M. Record-breaking fire weather in North America in 2021 was initiated by the Pacific northwest heat dome. Commun. Earth Environ. 5, 1–10 (2024).


    Google Scholar
     

  • John, J. & Rein, G. Heatwaves and firewaves: the drivers of urban wildfires in London in the summer of 2022. Preprint at https://doi.org/10.21203/rs.3.rs-4774726/v1 (2024).

  • Anderson, H., Schuette, R. & Mutch, R. Timelag and Equililbrium Moisture Content of Ponderosa Pine Needles. United States Department of Agriculture, Forest Service (1978).

  • Nelson, R. M. A method for describing equilibrium moisture content of forest fuels. Can. J. Res. 14, 597–600 (1984).


    Google Scholar
     

  • Resco de Dios, V. et al. Convergence in critical fuel moisture and fire weather thresholds associated with fire activity in the pyroregions of Mediterranean Europe. Sci. Total Environ. 806, 151462 (2022).


    Google Scholar
     

  • Ruffault, J., Moron, V., Trigo, R. M. & Curt, T. Daily synoptic conditions associated with large fire occurrence in Mediterranean France: evidence for a wind-driven fire regime. Int. J. Climatol. 37, 524–533 (2017).


    Google Scholar
     

  • Stoof, C. R., Kok, E., Cardil Forradellas, A. & van Marle, M. J. E. In temperate Europe, fire is already here: the case of The Netherlands. Ambio 53, 604–623 (2024).


    Google Scholar
     

  • Forestry Commission. Wildfire Statistics for England: Report to 2020-21. (2023).

  • Davies, M. G., Gray, A., Hamilton, A. & Legg, C. J. The future of fire management in the British uplands. Int. J. Biodivers. Sci. Manag. 4, 127–147 (2008).


    Google Scholar
     

  • Davies, G. M., Legg, C. J., Smith, A. A. & MacDonald, A. J. Rate of spread of fires in Calluna vulgaris-dominated moorlands. J. Appl. Ecol. 46, 1054–1063 (2009).


    Google Scholar
     

  • Davies, G. M., Smith, A. A., MacDonald, A. J., Bakker, J. D. & Legg, C. J. Fire intensity, fire severity and ecosystem response in heathlands: factors affecting the regeneration of Calluna vulgaris. J. Appl. Ecol. 47, 356–365 (2010).


    Google Scholar
     

  • Davies, G. M. & Legg, C. J. Fuel moisture thresholds in the flammability of Calluna vulgaris. Fire Technol. 47, 421–436 (2011).


    Google Scholar
     

  • Davies, G. M., Gray, A., Rein, G. & Legg, C. J. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. For. Ecol. Manag. 308, 169–177 (2013).


    Google Scholar
     

  • Grau-Andrés, R., Davies, G. M., Gray, A., Scott, E. M. & Waldron, S. Fire severity is more sensitive to low fuel moisture content on Calluna heathlands than on peat bogs. Sci. Total Environ. 616–617, 1261–1269 (2018).


    Google Scholar
     

  • Davies, G. M. & Legg, C. J. Developing a live fuel moisture model for moorland fire danger rating. in Proc. Forest Fires 225–236 (Toledo, Spain, 2008). https://doi.org/10.2495/FIVA080231.

  • Van Wagner, C. E. & Pickett, T. L. Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System (Minister of Supply and Services Canada, Ottawa, 1985).

  • Little, K., Graham, L. J., Flannigan, M., Belcher, C. M. & Kettridge, N. Landscape controls on fuel moisture variability in fire-prone heathland and peatland landscapes. Fire Ecol. 20, 14 (2024).


    Google Scholar
     

  • Walsh, S. F. et al. Hillslope-scale prediction of terrain and forest canopy effects on temperature and near-surface soil moisture deficit. Int. J. Wildland Fire 26, 191 (2017).


    Google Scholar
     

  • Davies, G. M., Legg, C. J., O’Hara, R., MacDonald, A. J. & Smith, A. A. Winter desiccation and rapid changes in the live fuel moisture content of Calluna vulgaris. Plant Ecol. Divers. 3, 289–299 (2010).


    Google Scholar
     

  • Belcher, C. M. et al. UK Wildfires and their Climate Challenges. Expert Led Report Prepared for the third Climate Change Risk Assessment (2021).

  • Nikonovas, T. et al. Vegetation phenology as a key driver for fire occurrence in the UK and comparable humid temperate regions. Int. J. Wildland Fire 33, WF23205 (2024).

  • Slijepcevic, A., Anderson, W. R., Matthews, S. & Anderson, D. An analysis of the effect of aspect and vegetation type on fine fuel moisture content in eucalypt forest. Int. J. Wildland Fire 27, 190–202 (2018).


    Google Scholar
     

  • Nyman, P., Metzen, D., Noske, P. J., Lane, P. N. J. & Sheridan, G. J. Quantifying the effects of topographic aspect on water content and temperature in fine surface fuel. Int. J. Wildland Fire 24, 1129–1142 (2015).


    Google Scholar
     

  • Lukenbach, M. C. et al. Hydrological controls on deep burning in a northern forested peatland. Hydrol. Process. 29, 4114–4124 (2015).


    Google Scholar
     

  • Kendon, E. J. et al. Multiperspective view of the 1976 drought–heatwave event and its changing likelihood. Q. J. R. Meteorol. Soc. 150, 232–261 (2024).


    Google Scholar
     

  • Fire and Rescue Service. Fire and Rescue Service Wildfire Operational Guidance: 8B8 Fire Suppression Tactics. (2013).

  • Andersen, R. et al. Blanket bog vegetation response to wildfire and drainage suggests resilience to low severity, infrequent burning. Fire Ecol. 20, 26 (2024).


    Google Scholar
     

  • Belcher, C. et al. A flammability phenology for dry mixed heaths and its implications for modelling fire behaviour. Int. J. Wildland Fire 34, WF24123 (2025).

  • Mozny, M., Trnka, M. & Brázdil, R. Climate change driven changes of vegetation fires in the Czech Republic. Theor. Appl. Climatol. 143, 691–699 (2021).


    Google Scholar
     

  • Griebel, A. et al. Specific leaf area and vapour pressure deficit control live fuel moisture content. Funct. Ecol. 37, 719–731 (2023).


    Google Scholar
     

  • Rein, G. Smouldering Fires and Natural Fuels. in Fire Phenomena and the Earth System (ed. Belcher, C. M.) 15–33 (Wiley, 2013).

  • Wilkinson, S. L. et al. Wildfire and degradation accelerate northern peatland carbon release. Nat. Clim. Chang. 13, 456–461 (2023).


    Google Scholar
     

  • Graham, A. M. et al. Impact on air quality and health due to the Saddleworth Moor fire in northern England. Environ. Res. Lett. 15, 074018 (2020).


    Google Scholar
     

  • Reardon, J., Hungerford, R. & Ryan, K. Factors affecting sustained smouldering in organic soils from pocosin and pond pine woodland wetlands. Int. J. Wildland Fire 16, 107 (2007).


    Google Scholar
     

  • Prat-Guitart, N., Rein, G., Hadden, R. M., Belcher, C. M. & Yearsley, J. M. Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires. Sci. Total Environ. 572, 1422–1430 (2016).


    Google Scholar
     

  • Frandsen, W. H. Ignition probability of organic soils. Can. J. For. Res 27, 1471–1477 (1997).

  • Huang, X. & Rein, G. Computational study of critical moisture and depth of burn in peat fires. Int. J. Wildland Fire 24, 798 (2015).


    Google Scholar
     

  • Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Chang. 11, 70–77 (2021).


    Google Scholar
     

  • Baker, S. J., Perry, M. C., Betts, R. A., Schoenecker, J. & Pellegrini, A. F. A. Spikes in UK wildfire emissions driven by peatland fires in dry years. Environ. Res. Lett. 20, 034028 (2025).


    Google Scholar
     

  • Gimingham, C. H. Biological flora of the British Isles. Calluna Salisb. A monotypic genus. Calluna vulgaris (L.) Hull. J. Ecol. 48, 455–483 (1960).


    Google Scholar
     

  • Vandvik, V. et al. Management-driven evolution in a domesticated ecosystem. Biol. Lett. 10, 20131082 (2014).


    Google Scholar
     

  • Legg, C. J., Maltby, E. & Proctor, M. C. F. The ecology of severe moorland fire on the North York moors: seed distribution and seedling establishment of Calluna Vulgaris. J. Ecol. 80, 737–752 (1992).


    Google Scholar
     

  • Maltby, E., Legg, C. J. & Proctor, M. C. F. The ecology of severe moorland fire on the North York moors: effects of the 1976 fires, and subsequent surface and vegetation development. J. Ecol. 78, 490–518 (1990).


    Google Scholar
     

  • Alexander, M. E. & Cruz, M. G. Fireline Intensity. in Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires (ed. Manzello, S. L.) 1–8 (Springer International Publishing, Cham, 2018).

  • Marston, C., Rowland, C. S., O’Neill, A. W. & Morton, R. D. Land Cover Map 2021 (10m classified pixels, GB). NERC EDS Environmental Information Data Centre. (2022).

  • Alexander, L. V. & Jones, P. D. Updated precipitation series for the U.K. and discussion of recent extremes. Atmos. Sci. Lett. 1, 142–150 (2000).


    Google Scholar
     

  • Norum, R. A. & Miller, Melanie. Measuring Fuel Moisture Content in Alaska: Standard Methods and Procedures. PNW-GTR-171 https://www.fs.usda.gov/treesearch/pubs/7574, https://doi.org/10.2737/PNW-GTR-171 (1984).

  • Met Office. Met Office MIDAS Open: UK Land Surface Stations Data (1853-current). Centre for Environmental Data Analysis, 14.6.23 (2019).

  • Coyle, M. et al. Carbon dioxide and methane fluxes and associated environmental observations from an unmodified blanket bog, Forsinard Flows RSPB Reserve, Scotland, 2016-2022. NERC EDS Environmental Information Data Centre. (2024).

  • Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).


    Google Scholar
     

  • Farewell, T. S., Truckell, I. G., Keay, C. A. & Hallett, S. H. The use and applications of the Soilscapes datasets. Cranfield University (2011).

  • Soil Survey of Scotland Staff. Soil maps of Scotland at a scale of 1:250 000. Macaulay Institute for Soil Research, Aberdeen. https://doi.org/10.5281/zenodo.4646891 (1981).

  • Hollister, J., Shah, T., Robitaille, A., Beck, M. & Johnson, M. Elevatr: access elevation data from various APIs. https://doi.org/10.5281/zenodo.5809645 R package version 0.4.2, (2022).

  • Hijmans, R. & van Etten, J. raster: Geographic analysis and modeling with raster data. R package version 2.0-12. http://CRAN.R-project.org/package=raster (2012).

  • Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061. NASA EOSDIS Land Processes DAAC. Accessed 2023-06-20 from https://doi.org/10.5067/MODIS/MOD13Q1.061 (2021).

  • R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. https://www.R-project.org/ (2023).

  • Andrews, P. L. BehavePlus fire modeling system, version 5.0: Variables. Gen. Tech. Rep. RMRS-GTR-213 Revised. Fort Collins, CO: Department of Agriculture, Forest Service, Rocky Mountain Research Station. 111 p. http://www.fs.fed.us/rm/pubs/rmrs_gtr213.pdf (2009).

  • Sawer, P. Wennington fire: compost blaze that devastated village started just yards from fire station. The Telegraph (2022).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *